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Abstract
Non-enzymic protein glycosylation (glycation) plays important roles in ageing and in diabetes and its secondary complications. Dietary

constituents may play important roles in accelerating or suppressing glycation. It is suggested that carnivorous diets contain a potential anti-

glycating agent, carnosine (b-alanyl-histidine), whilst vegetarians may lack intake of the dipeptide. The possible beneficial effects of

carnosine and related structures on protein carbonyl stress, AGE formation, secondary diabetic complications and age-related neuropathology

are discussed.

# 2005 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

A number of recent papers (Ahmed, 2005; Suji and

Sivakami, 2004; Chen et al., 2004; Davydov et al., 2004;

Kikuchi et al., 2003; Miller et al., 2003) have (i) discussed

the importance of non-enzymic protein glycosylation or

glycation mediated by glucose (and more reactive alde-

hydes) in ageing, neurodegeneration, diabetes and its related

complications and (ii) outlined possible mechanisms of

intervention, pharmacological and dietary. In their review

Davydov et al. (2004) emphasize the role of aldehydes as

sources of protein modification and the importance of the

ameliorating effects of aldehyde-scavenging enzymes

generally, and Chen et al. (2004) highlight specifically the

action of glyoxalase-1 against the deleterious effects of the

highly reactive aldehyde methylglyoxal in Alzheimer’s

disease. Ahmed (2005) suggests the properties which

putative, non-enzymic, anti-glycating agents should possess

to help suppress aldehyde-mediated protein modification

and consequential secondary diabetic complications. Suji

and Sivakami (2004) discuss how diet might influence

glycation and cite the observations of Krajcovicova-
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Kudlackova et al. (2002) who found that levels of advanced

glycosylation end products (AGEs) in the plasma of

vegetarians were higher than those detected in omnivours.

As an explanation Krajcovicova-Kudlackova et al. (2002)

suggested that the higher intake of fructose by the

vegetarians induces the raised AGE plasma levels. There

is, however, an additional or alternative explanation that

should be considered.
2. Carnosine and aldehydes

The dipeptide carnosine (b-alanyl-L-histidine), discov-

ered more than a century ago (Gulewitsch and Amiradzibi,

1900), is found exclusively in animal tissue, especially

muscle (Maynard et al., 2001) and brain (de Marchis et al.,

2000) sometimes in millimolar concentrations (see also

Quinn et al., 1992 and Bonfanti et al., 1999 for reviews).

There is an increasing body of evidence that shows that

carnosine may be an effective anti-glycating agent, at least in

model systems (Hipkiss et al., 1995, 1998b; Vinson and

Howard, 1996; Hipkiss, 1998; Swearengin et al., 1999;

Seidler, 2000; Burcham et al., 2002; Gugliucci et al., 2002;

Ukeda et al., 2002; Argirova and Argirov, 2003; Gugliucci,

2003; Gugliucci and Menini, 2003; Gianelli et al., 2003; Liu
.
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et al., 2003; Monnier, 2003; Seidler et al., 2004; Hobart

et al., 2004; Yan and Harding, in press) and cultured cells

(Hipkiss et al., 1997; Wang et al., 2003). The dipeptide has

been shown to inhibit formation of protein carbonyls and

cross-links induced by reducing sugars and other reactive

aldehydes e.g. malondialdehyde and methylglyoxal (Hipkiss

et al., 1998a,b; Hipkiss and Chana, 1998; Hipkiss and

Brownson, 2000). Furthermore, adducts formed by carno-

sine and deleterious aldehydes (e.g. acrolein and hydro-

xynonenal) have been characterized (Aldini et al., 2002;

Carini et al., 2003; Liu et al., 2003). The dipeptide can also

react with (i.e. carnosinylate) protein carbonyls (Brownson

and Hipkiss, 2000) and suppress AGE formation (Hipkiss

et al., 1998a) and AGE-induced protein modification

(Hipkiss and Chana, 1998). NMR data obtained from

human leg muscle indicates immobilization of a proportion

of tissue carnosine, possible because it forms adducts with

(i.e. carnosinylates) carbonyl groups present on oxidized

phosphatidylcholine (Schroder et al., 2004).
3. Diabetes, carnosine and glycation

Many of the secondary complications of diabetes result

from protein glycation and oxidation (glycoxidation) (see

Brownlee, 2001 and Ahmed, 2005 and Refs. therein)

mediated by agents and processes against which carnosine

may, theoretically, protect (Hipkiss, 1998); some preliminary

supportive evidence from animal studies has been obtained

(Hipkiss et al., 2001). Additionally there are a number of

observations which suggest an inverse relationship between

diabetes and carnosine: the concentration of carnosine in

plasma of diabetic rats is reported to be lower than in plasma

of normal animals (Nagai et al., 2003); erythrocyte carnosine

levels are lower in human diabetics than in normal subjects

(Gayova et al., 1999); carnosine can protect diabetic rat

erythrocytes against acidic haemolysis (Korobov et al., 2000);

Nagai and co-workers (Nagai et al., 2003; Yamano et al.,

2001) propose that carnosine has a regulatory effect on rat

blood glucose levels. Indeed carnosine seems to satisfy many

of the requirements that Ahmed (2005) suggests that any

putative glycation inhibitor should possess i.e. carbonyl

scavenger (Hipkiss, 1998), metal ion chelator (Horning et al.,

2000; Baran, 2000) and anti-oxidant (Kohen et al., 1988;

Nagasawa et al., 2001; Fontana et al., 2002).
4. Protective roles of carnosine

Carnosine has some ameliorative effects on ageing at

cellular and whole animal levels. Carnosine suppresses

senescence in cultured human fibroblasts and even rejuve-

nates senescent cells (McFarland and Holliday, 1994, 1999).

More recently, carnosine was shown to protect telomeres of

cultured cells against oxidative damage (Shao et al., 2004).

Beneficial effects of carnosine on the survival of senescence-
accelerated mice (Yuneva et al., 1999; Boldyrev et al., 2004),

Drosophila (Yuneva et al., 2002) and rodent fibroblasts

(Kantha et al., 1996) have also been described. The processes

responsible for these effects have not been defined but they are

most likely consequences of carnosine’s pluripotency

(Hipkiss, 1998) as the dipeptide possess anti-oxidant (Kohen

et al., 1988; Nagasawa et al., 2001; Fontana et al., 2002),

copper-, calcium- and zinc-chelating (Horning et al., 2000;

Baran, 2000) and glyoxylase-mimetic (Battah et al., 2002)

activities, in addition to the aldehyde- and carbonyl-

scavenging properties outlined above.
5. Could carnosine suppress carbonyl stress-induced

pathology?

Carnosine’s pluripotency may provide protective func-

tion, at a variety of levels, against the development of

pathologies where glycoxidative events and the generation

of protein carbonyls might be causative (see Levine, 2002;

Dalle-Donne et al., 2003 for reviews). For example

cataractogenesis is often a diabetes-related. Carnosine’s

potential here has been most clearly demonstrated by

Barbizhayev and et al. who have repeatedly shown that

carnosine and its acetylated pro-drug acetyl-carnosine has

both therapeutic and rejuvenating actions against the

cataracts in human and animal lenses (Barbizhayev, 2004;

Barbizhayev et al., 2004, 2001).

Glycoxidation effects and their control are also thought to

be important in neurodegenerative conditions (Shuvaev et al.,

2001; Picklo et al., 2002; Reddy et al., 2002; Hipkiss, 2002;

Kikuchi et al., 2003; Ghanbari et al., 2004; Ahmed et al.,

2005). Chen et al. (2004) conclude that glyoxalase activity can

attenuate neuronal methylglyoxal levels to suppress alde-

hyde-mediated tau modification and consequent aggregation

in a mouse model of Alzheimer’s disease. It is therefore at

least conceivable that carnosine could supplement glyox-

alase’s action, both by dipeptide’s aldehyde-scavenging

action and its glyoxalase-mimetic activity (Battah et al.,

2002). Experimental observation (Preston et al., 1998; Munch

et al., 1997; Kim et al., 2002; Miyata and van Ypersele van

Strihou, 2003; Boldyrev et al., 1997, 1999, 2003, 2004)

provide some support for the suggestion that carnosine could

be useful in ameliorating aspects of Parkinson’s and

Alzheimer’s diseases. It may not be coincidental (Hipkiss,

2004) that the olfactory lobe, an area which has been

implicated in the onset of these conditions, is normally

carnosine enriched (Sassoe-Pognetto et al., 1993).
6. Carnosine’s effects on humans

There is some evidence that suggests beneficial effects of

the dipeptide in humans, despite the presence of serum and

cellular carnosinases, enzymes which hydrolyse the dipep-

tide to histidine and b-alanine. Antonini et al. (2002) showed
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that both meat and carnosine-supplemented diets increased

total anti-oxidant activity in human sera. Chez et al. (2002)

found that dietary carnosine-supplementation improved

behaviour of autistic children. The mechanisms involved

are totally unknown but carnosine’s anti-oxidant and

aldehyde-scavenging roles could be involved because the

autistic brain shows signs of oxidative injury (McGinnis,

2004).
7. Diets and carnosine

It is suggested that macromolecular glycation and

associated pathologies induced by sugars, deleterious

aldehydes and ketones, (Brownlee, 2001) and glycotoxins

produced during cooking (Koschinsky et al., 1997), might be

ameliorated by carnivorous diets containing carnosine and

possibly the related peptides, acetyl-carnosine, homocarno-

sine and anserine. In contrast any diet which is exclusively

vegetarian would lack carnosine, a likely anti-glycating

agent; therefore the observations of Krajcovicova-Kudlack-

ova et al. (2002) might be explained by a deficiency of

carnosine in a vegetarian diet, thereby permitting the

increased AGE formation and reactivity detected in

vegetarians.

There is little clear evidence to either support or refute the

proposal that a carnivorous diet or carnosine-supplementa-

tion suppresses glycation and secondary diabetic complica-

tions in humans. This is probably because the components of

human carnivorous diets have yet to be considered as

potentially protective (but see McCarty, 2005). However the

author has received anecdotal ‘‘evidence’’ from medical

practitioners who report that their carnivorous diabetic

patients appear to control their secondary complications

better than vegetarian diabetics. Clearly the situation is

complex as vegetarians are often more fastidious than

carnivores about their health and diets; the latter might

consume more dietary carnosine but any accompanied

increased intake of animal fat may mask the any benefit

which carnosine might exert.

Nevertheless it is suggested that carnosine-rich diets

could become increasingly important in old age. Some

studies have shown that tissue levels of carnosine decline

with age (Johnson and Hammer, 1992; Stuerenburg and

Kunze, 1999; Stuerenburg, 2000) and the concentration of a

related structure, homocarnosine, in human cerebrospinal

fluid apparently may decline between 4- and 10-fold with

age (Huang et al., 2005). The latter observation could be

important in age-related neuropathology as Ahmed et al.

(2005) have recently reported an association between

Alzheimer’s disease and raised levels of protein glycation

products in cerebrospinal fluid (CSF). One conjectures

whether homocarnosine normally suppresses protein glyca-

tion in the young CSF, but a progressive decline in the

concentration of this dipeptide permits increasing CSF

protein glycation.
8. The carnosinase paradox

Clearly serum and tissue carnosinases could present

major obstacles towards any ameliorative actions of

carnosine in vivo. However hydrolysis of the dipeptide into

b-alanine and histidine would immediately double the

molarity of available amino groups for aldehyde-scavenging

etc. Consequently carnosinase activity need not be regarded

as counterproductive with respect to carnosine’s anti-

glycating and aldehyde/carbonyl scavenging actions.
9. Other putative anti-glycating agents

It should be pointed out that a number of other naturally

occurring putative anti-glycating agents have been pro-

posed, these include polyamines (Gugliucci and Menini,

2003), pyridoxamine (Baynes, 2002; Amarnath et al., 2004),

thiamine (Hammes et al., 2003) and various Chinese herb

extracts (Yokozawa and Nakagawa, 2004; Tang et al., 2004:

Kim et al., 2004); other possible carbonyl scavengers

include aminoguanidine (Thornalley, 2003) and D-penicil-

lamine (see Wondrak et al., 2002; Rahbar and Figarola,

2003; Monnier, 2003 for extensive lists). However that

carnosine possess remarkably low toxicity and is found

exclusively in animal tissues indicates the possibly utility of

carnivorous diets, or diets supplemented with carnosine, for

combating glycation/glycoxidation of proteins and amino-

lipids, especially in diabetics.
10. Conclusions

It is clear that much research is required to determine

whether carnivorous diets or carnosine-supplementation do

in fact suppress protein glycation and the secondary

complications of diabetes. Similarly it is unknown whether

carnosine and related dipeptides (e.g. homocarnosine) exerts

any protection action with respect to Alzheimer’s disease or

other neurodegenerative conditions where glycoxidative

events are involved. The present discussion has outlined a

case for more research in this area, but because carnosine

and homocarnosine cannot be patented one wonders whether

the likely absence of any large financial profit from such

studies would hinder investigation. Conversely, however,

should such studies reveal that carnosine, homocarnosine or

carnivorous diets do benefit to human health, their relatively

low costs might be considered to be more socially desirable

than expensive patented pharmaceuticals.

Note added in Proof

Following submission of this manuscript Lee et al. (2005)

have reported that both carnosine and histidine suppress

some diabetic symptoms in mice, consistent with the

proposals outlined here.
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